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We have studied the collapse of spherical stellar models and their structure after violent 
relaxation.  The numerical method is a phase space method based on the splitting scheme. 
This method enabled us to reproduce the evolution of cold models having 
virial ratios as small as ~10−2, with high accuracy.  We have examined the following models:

Uniform sphere: ρ = 3M/(4πR0
3) r<R0,

ρ ∝ r−0.5 model: ρ = 5M/(8πR0
3) (r/R0)−0.5 r<R0,

ρ ∝ r−1 model: ρ = M/(2πR0
3) (r/R0)−1 r<R0,

ρ ∝ r−2 model: ρ = M/(4πR0
3) (r/R0)−2 r<R0,

Cooled Plummer model: ρ  = 3M/(4πR0
3) [1 + (r/R0)2 ]−2.5,

We chose the radius of the models, R0, as R0 = β−1  in non dimensional units, where M  is the 
total mass, and β  is the initial virial ratio.  This gives the phase space density that is independ-
ent of β.  Every initial model except for the cooled Plummer model has the constant velocity 
dispersion.  For the cooled Plummer model, we simply reduced the velocity dispersion of the 
equilibrium model by a factor.

We can summarize the numerical results as follows:
(1) Uniform sphere
This model collapses violently because all parts of the initial model have the same collapse 
time.  As a result, a large amount of stars gain energy and escape from the system.  The 
collapse forms a dense core where the phase space desity remains close to its initial value.
Thus, the core structure is determined mainly by the phase space density, and it is almost 
independent of the initial virial ratio (or the intial radius).
(2) Power-law models
The collapse is mild and the relaxation takes place as phase mixing as matter in the outer 
region infalls.  The density profile within the half-mass radius can be approximated by  
ρ ∝ r−2.2.  This profile is universal: it depends on neither the initial virial ratio nor the 
power-law index.  The radial velocity dispersion overcomes the tangential one, and the value 
remain almost constant in this region (figure 1).  This is consistent with the index of the 
density profile (−2.2).
(3) Cooled Plummer model
 The collapse resembles that of a uniform sphere when the virial ratio is large, though no 
escapers appear:  the collapse stops soon and a massive core and a steep envelope form.
On the other hand, the collapse of a cold model results in a less massive core and a less steep 
envelope, like that of power-law models.
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Figure 1. Velocity dispersions after collapse, for a uniform sphere and a ρ ∝ r−1 model.

Figure 2. Density profiles of spherical models after collapse.  Every model has the initial radius given by
R0 = β−1, where β  is the initial virial ratio.  Note that the figures for power-law models are scaled so that
models have the same initial density profile.




